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1 Introduction 

Recently there has been renewed interest in finite-difference algorithms of high order of 

accuracy (4th and above), both for hyperbolic and parabolic p.d.e’s (see for example, [1], [2], 

[3] ). The advantages of high-order accuracy schemes, especially for truly time dependent 

problems, are often offset by the difliculty of imposing stable boundary conditions. Even 

when the scheme is shown to be G.K.S.-stable the error may increase exponentially in time. 

This paper is concerned with 4th-order approximations to the long time solutions of the 

diffusion equation in one and two dimensions, on irregular domains. By an irregular domain, 

we mean a body whose boundary points do not coincide with nodes of a rectangular mesh. 

In section 2 we develop the theory for the one-dimensional semi-discrete system resulting 

from the spatial differentiation used in the finite difference algorithm. Energy methods are 

used in conjunction with “SAT” type terms (see [I]), in order to find boundary conditions 

that preserve the accuracy of the scheme while constraining an energy norm of the error to 

be temporally bounded for all t > 0 by a constant proportional to the truncation error. 

In section 3 it is shown how the methodology developed in section 2 is used as a building 

block for the multi-dimensional algorithm, even for irregular shapes containing “holes.” 

Section 4 presents numerical results in two space dimensions illustrating the long-time 

temporal stability of the method, in contradistinction to “standard” methods for Cartesian 

grid on irregular shapes. 
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2 The One Dimensional Case 

We consider the following problem 

and f ( x , t )  E C4. 

Let us spatially discritize (2,la) on the following uniform grid: 

Ax=h " 

q p  
M I 1 I I s I I I I '. 

I I I I I I I 6 I 

(2.1a) 

(2.lb) 

(2.1c) 

(2.ld) 

x2 x3 X .  1-1 X. I 3+i 'N-2 xN-l xN 

Figure 1: One dimensional grid. 

Note that the boundary points do not necessarily coincide with z1 and ZN. Set xj+1 -xj = h, 

1 5 j 5 N - 1; X I  - r L  = YLh,  O 5 YL < 1; P(R - X N  = YRh, 0 5 YR < 1. 

The projection unto the above grid of the exact solution u ( x , t )  to (2.1), is uj(t) = 

u ( x j , t )  = u(t). Let 3 be a matrix representing the second partial derivative with respect to 

x, at internal points without specifying yet how it is being built. Then we may write 

A 

d -u(t) = k [ h ( t )  + B + T] + f ( t )  
dt 
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where T is the truncation error due to the numerical differentiation and f ( t )  = f ( q , t ) ,  

1 5 j 5 N .  The boundary vector B has entries whose values depend on g ~ , g ~ ,  y ~ , y ~  in 

such a way that bu + B represents the 2nd derivative everywhere to the desired accuracy. 

The standard way of finding a numerical approximate solution to (2.1) is to omit T from 

(2.2) and solve 
d 
-v(t) at = k ( B v ( t )  + B) + f ( t )  (2.3) 

where v(t) is the numerical approximation to the projection u(t). An equation for the 

solution error vector, Z(t)  = u(t) - v(t), can be found by subtracting (2.3) from (2.2): 

d -Z= kBZ(t) + k T ( t )  at 

Our requirement for temporal stability is that 11 E" 11, the L2 norm of Z', be bounded by  a 

"constant" proportional to h" (m being the spatial order of accuracy) for all t < 00. Note 

that this definition is more severe than either the G.K.S. stability criterion [4] or the definition 

in [I]. 

It can be shown that if is constructed in a standard manner, i.e., the numerical second 

derivative is symmetric away from the boundaries, and near the boundaries one uses non 

symmetric differentiation, then there are ranges of values of - y ~  and - y ~  for which b is 

not negative definite. Since in the multi-dimensional case one may encounter all values of 

0 5 yh,y~ < 1, this is unacceptable. 

The rest of this section is devoted to the construction of a scheme of 4th order spatial 

accuracy, which is temporally stable for all y ~ , y ~ .  
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The basic idea is to use a penalty-like term as in the SAT procedure of ref [l];  here, 

however, it will be modified and applied in a different manner. 

Note fist  that the solution projection uj(t) satisfies, besides (2.2), the following differ- 

ential equation: 

(2.5) 
d u  
dt 
- = JCDU + kTe + f ( t )  

where now D is indeed a differentiation matrix, that does not use the boundary values, and 

therefore T, # T but it too is a truncation error due to differentiation. 

Next let the semi-discrete problem for v(t) be, instead of (2.3), 

where gL = (1 , .  . . , l )TgL(t);  gR = (1,. . . , l )TgR( t ) ,  are vectors created from the left and 

right boundary values as shown. The matrices AL and AR are defined by the relations: 

i.e., each row in AL(AR) is composed of the coeEcients extrapolating u to its boundary value 

gL(gR),  at r L ( r R )  to within the desired order of accuracy. (The error is then TL(TR).) The 

diagonal matrices TL and TR are given by 

Subtracting (2.6) from (2.5) we get 
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where 

TI = T, i- TLTL i- TRTR 

Taking the scalar product of E'with (2.9) one gets: 

We notice that (Z7 1Mq is (E', ( M  + MT)E'/2, where 

If M + MT can be made negative definite then 

Equation (2.10) then becomes 

and using Schwartz's inequality we get after dividing by 11 E' 11 

d 
dt - 11 115 --kQ II E'II +k II T1 I I  

and therefore (using the fact that v(0) = ~ ( 0 ) )  

(2.10) 

(2.11) 

(2.12) 

(2.13) 
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where the "constant" 11 TI 1 1 ~ =  maq17<t - 11 T ~ ( T )  11. 
If we indeed succeed in constructing M such that M + MT is negative definite, with Q > 0 

independent of the size of the matrix M as it increases, then it follows from (2.13) that 

the norm of the error will be bounded for all t by a constant which is O(h") where m is 

the spatial accuracy of the finite difference scheme (2.6). The numerical solution is then 

temporally stable. 

The rest of this section is devoted to this task for the case of m = 4, i.e, a fourth order 

accurate finite difference algorithm. 

Let the n x n differentiation matrix, D,  be given by 

-154 214 -156 61 -10 
-15 -4 14 -6 1 

16 -30 16 -1 
-1 16 -30 16 -1 

-1 16 -30 16 -1 

-1 

1 
-10 

16 -30 16 -1 
-1 16 -30 16 -1 
-6 14 -4 -15 10 
61 -156 214 -154 45 

(2.14) 

The upper two rows and the lower two rows represent non-symmetric fourth order accurate 

approximation to the second derivative without using boundary values. The internal rows 
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are symmetric and represent central differencing approximation to u,, to the same order. 

Note that D is not negative definite, and neither is the symmetric part of f ( D  + DT) which 

is given by: 

’ 90 -144 213 -156 61 -10 
-144 -30 12 13 -6 1 

213 12 -60 32 -2 0 
-156 13 32 -60 32 -2 

61 -6 -2 32 -60 32 -2 
-10 1 0 -2 32 -60 32 -2 

1 
24 h2 
- 

-2 32 -60 32 -2 0 1 -10 
-2 32 -60 32 -2 -6 61 

-2 32 -60 32 13 -156 
0 -2 32 -60 12 213 
1 -6 13 12 -30 -144 

-10 61 -156 213 -144 90 

(2.15: 

In order to construct M we need to specify AL, AR, rL and TR. We construct AL as 

follows: 

AL = ALL) +- CLAL~) (2.16) 
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where 
a1 cy2 a3 a4 a5 0 ... 0 
a1 a2 a3 a4 a5 0 ... 0 
a1 a2 CY3 a4 a5 0 ... 0 
a1 a2 a3 a4 a5 0 ... 0 
a1 a 2  a3 a4 a5 0 ... 0 

a1 a 2  CY3 a4 cy5 0 ... 0 

CL = diag [-2Oa1/71, 0,. . . , 01 

1 -  -1 5 -10 10 -5 1 0 ... 0 
-1 5 -18 10 -5 1 0 ... 0 

-1 5 -10 PO -5 1 0 ... 0 
The a’s are given by 

0 1  = 1 + -YL 25 + 2 7 L  3 5 2  + E Y L  5 3  + GYL 1 4  
12 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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Note that AL1;)v gives a vector whose components are the extrapolated value of v at x = r1; 

(;.e., vrL(t)), to fifth order accuracy; while A$% gives a vector whose components represents 

( d 5 q / d x 5 ) h 5 .  Since CL (see 2.18) is of order unity, then ALV = (ALL) + c1;Af))v represents 

an extrapolation of v to Or, to fifth order. 

Before using AL in (2.11) or (2.6) we must define 71;: 

where 

(2.22) 

The right boundary treatment is constructed in a similar fashion, and the formulae corre- 

sponding to (2.16) - (2.22) become: 

(2.23) 

1 aN--1 a N  

aN-1  aN 
aN-1  aN 

(2.24) aN-1  a N  
aN-1  a N  
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ALR) = 

The a’s are here: 

CR = diag[O, 0, .  . . , 0, - 2 o a ~ / 7 1 ]  

0 0 ... 0 1 -5 10 -10 5 -1 
0 0 ... 0 1 -5 10 -10 5 -1 

0 0 ... 0 1 -5 10 -10 5 -1 

(2.25) 

(2.26) 

(2.27) 

(2.28) 



(2.29) 

1 
24h2 
- 

We are now ready to construct 

r 

0 ... 

- 

Upon using equations (2.14)-(2.29) in (2.30) one gets: 

0 
w(L) 0 

-2 0 
32 -2 0 

0 -2 32 -60 32 -2 
-2 32 -60 32 -2 

-2 32 -60 32 -2 

-2 32 -60 32 -2 0 ... 0 
0 -2 32 

-2 

0 
0 W(R) 

(2.31) 
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where W(L) and W(R) are 6 x 6 blocks given by: 

- -60 32 -2 0 1 0 -  
32 -60 32 -2 -6 0 

-2 32 -60 32 13 0 
0 -2 32 -60 12 0 
1 -6 13 12 -30 0 
0 0 0 0 0 -1- 

0 i = 1 or j = 1 

1 < i , j  < 5 

(2.32) 

(2.33) 

(2.34) 

1 O < N - i , N - j < 4  (2.35) 

- -1 ( 4 0 0 0 0  
0 -30 12 13 -6 1 
0 12 -60 32 -2 0 
0 13 32 -60 32 -2 
0 -6 -2 32 -60 32 

- 0  1 0 -2 32 -60 

(2.36) 

(2.37) 
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The next task is to show that &f = +(Ad + MT) is negative definite. We write the symmetric 

matrix ~2 as a sum of five symmetric matrices, 

We shall show that f i 1  is negative definite, and that fij(j = 2,. . . 5 )  are non-positive definite. 

The a’s are given by 

-- . I  0 0  
2/30 

0 - 2  1 0  0 
0 1 - 2  1 0  
0 0 1 - 2  1 
0 0 0 1 - 2  1 

1 -2 1 0 
1 -2 0 
0 0 -- 

2/30 
1 

middle block. 
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0 0 0 0  0 0 
0 0 0 0  0 0 

0 0 0 0  0 0 
0 0 0 0 - 1  2 - 1  
0 0 0 0  2 - 5  4 - 1  

0 0 0 0  0 0 0 

-1 4 -6 

0 0 0 0 0  0 
0 0 0 0 0  0 
0 0 0 0 4 )  0 
0 0 0 0 0  0 
0 0 0 0 0  0 
0 0 0 0 0 - 1  1 
0 0 0 0 0  1 - 2  

1 

4 -1 

-1 4 -6 4 -1 
-1 4 - 5  2 0 0 0 0  

-1 2 - 1 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  

0 

1 
-2 1 

1 -2 1 
1 - 1 0 0 0 0 0  

0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  

(2.40) 

(2.41) 
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0 

13 

-(a374 + Q473) 
-60 + 2p 

-(a475 + a574) 
-2 

0 

-6 

-(a475 + a57-4) 
-58 -I- P 

28 - p 

0 

-2 

28 - p 

-26 + p 

(2.42) 
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A25 = 

1 
-1 -.. 

-1 1 -  

-26 + P 

- -  
0 

+ 0 

- -1 

28 - P 

-2 

- 

-1 
1 -  

0 

(2.43) 

Let us consider dl - see (2.39); it may be decomposed as follows: 

A 

MI = - 

1 -1 

(2.44) 

The last matrix in non-positive definite. The first term is a product of a regular matrix with 

its transpose, hence its negative is a negative definite matrix. Thus we established that h1 
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is negative definite for any finite dimension N .  All its eigenvalues are negative. It remains 

to show that the eigenvalues of &/h2 (see (2.38) are bounded away from zero by a constant 

as h-+O (N-+oo). 

Consider a symmetric tridiagonal matrix S with, like $1, constant diagonals: 

S =  

b a O  
a b a  
O a b a  

a h a  
a b  

(2.45) 

Designate by Dj the determinant of the upper-left j x j sub-matrix. Thus D1 = b, 0 2  = 

det [ a b  a ] ,  etc. 

We have then D1 = b, D2 = b2 - a2 and in general 

It can be shown (see Appendix I) that the solution to the recursion relation (2.46) is 

1 A  B Dj = -- [ j + j] 
a2 111 P2 

where 

1 
PI = - [ b + & G @ ]  2a2 

1 
2a2 

112 = -[b-dFZF] 

(2.47) 

(2.48) 

(2.49) 
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1 
1 B =  [(D2 - bD1) P2 + Dl3 

P1 - P2 

(2.50) 

(2.51) 

We have already shown that &fl is negative definite. The eigenvalue of kl are found from 

(2.52) 

thus either X = -1/2/30 < 0 (because PO will be taken positive) or X = eigenvalue of fil < 0. 

We would like to investigate the behavior of the eigenvalues of & ~ 1 .  In particular we 

would like to show that these eigenvalues (which are negative) are bounded away from zero. 

To show this we analyze the behavior of - X I  as N increases. We now take S = f i 1 -  X I .  

Its determinant is given by DN-~. Substituting (2.48)-(2.51) into (2.47) with j = N - 2 we 

get after some elementary manipulations 

2N-2 
D N - ~  = - sin(N - I)$ 

prN-3 

where 

p = d m ;  b = - 2 - X ;  a = l  

(2.53) 

(2.54) 

T = 4 b 2 + p 2 = 2  

8 = tan-'(p/b) 

From (2.52) we require 

D N - ~  = 0 

18 
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This is equivalent, see (2.53), to requiring 

k7t 
6'=- 

N - 1 '  
IC = 1, ..., N - 2 .  

From the definition of 6' and (2.54) we obtain 

(A < 0). 
4- 

tan (5) N - 1  = - 2 + x  ' 

Squaring (2.57) we get a quadratic equation for A, the solution of which is 

= -2 l f c o s  - [ ( ~ ~ 1 ) j  

For any fixed N ,  the smallest values of 1x1 is given by (2.58) for k = 1, 

As N increases, we have 

A,,, -+ -2 

7t2 - -  - M -r2h2. 
( N  - 1)2 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

Thus the eigenvalues of fi1/24h2 (and hence of fi'/24h2) are bounded away from zero by 

the value - (?$ ) . 
We now consider &2. One can verify that 

(2.61) 



where 
- 

A 

Therefore f i 2  

(2.62) 

0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  

0 0  
0 0  
0 0  
0 0  0 
0 0  1 0  
0 0 - 2  1 0  

0 1 - 2  1 
1 -2 

0 
0 

non-positive definite. In a similar 

0 

1 

1 
1 -2 
0 1  

0 

fashion 

0 
1 0  

-2 0 
1 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  

M 3  is non-positive definite because 

M3 = - i f 3 i @  (2.63) 
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with 
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0 - 1  

1 -1 

1 -1 
1 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  

(2.64) 

The matrices &4 and && are N x N matrices with zero entries except for 6 x 6 upper-left 

(lower-right) blocks. It is sufficient to show that these blocks are negative definite. This 

was done symbolically using the Mathematica software and plotted for 0 5 y ~ ,  y~ < 1 and 

Po = 1. f i 4  and M 5  are indeed negative definite for, 0 5 y~,yL < 1. Thus we have shown 

that I@ = $(A4 + MT) is indeed negative definite, and its eigenvalues are bounded away 

from zero by (-a2/24), even as N + 00, and the error estimate (2.13) is valid. 

3 The TWO Dimensional Case 

We consider the inhomogeneous diffusion equation, with constant coefficients, in a domain 

0. To begin with we shall assume that Q. is convex and has a boundary curve a0 E C2. 

The convexity restriction is for the sake of simplicity in presenting the basic idea; it will be 
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removed later. We thus have 

u(x, Y,O) = uo(z, Y) 

u(x, Y,t>lan = U B ( t )  

We shall refer to the following grid representation: 

(3.la) 

(3.1b) 

(3.1~) 

k 

k=3 

k=2 

k=l 

Figure 2: Two dimensional grid. 

We have MR rows and M, columns inside 0. Each row and each column has a discreitized 

structure as in the one 1-D case, see figure 1. Let the number of grid points in the kth row 

be denoted by Rk and similarly let the number of grid points in the jth column be Cj. Let 
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the solution projection be designated by U j , k ( t ) .  By U(t) we mean, by analogy to the 1-D 

case, 

Thus, we have arranged the solution projection array in vectors according to rows, starting 

from the bottom of s1. 

If we arrange this array by columns (instead of rows) we will have the following structure 

Since U(’)(t) is just a permutation of U(t), there must exist an orthogonal matrix P such 

that 

U y t )  = PU (3.4) 

If the length of U(t) is C, then P is an C x C matrix whose each row contains C - 1 zeros and 

a single 1 somewhere. 

The second derivative operator d2/dz2 in (3.la) is represented on the kth row by the 

differentiation matrix Of’, whose structure is given by (2.14). Similarly let d2/dy2 be given 

on the jth column by Dp), whose structure is also given by (2.14). With this notation the 

Laplacian of the solution projection is: 
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D? Di"' 
D(") = [ DP) (") ] ;D(Y) = [ D$" (Y) ] (3.6) 

DMR DMC 
where D(") and D(Y) are (e x a) matrices and have the block structures shown. TF) and TP) 

where 

are the truncation errors associated with D(") and D(Y), respectively. We now call attention 

to the fact that D(%) and D(Y) do not operate on the same vector. This is fixed using (3.4): 

Thus (3.la) becomes, by analogy to (2.5), 

where f ( t )  is f ( z ,  y; t )  arranged by rows as a vector. 

Before proceeding to the semi-discrete problem let us define: 

where T L ~ ,  A L ~  are the TL and AI, defined in section 2, appropriate to the kth row; similarly 

for T R ~  and A R ~ .  In the same way, define 

where B and T stand for bottom and tog. 

We can now write the semi-discrete problem by analogy to (2.6) 
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where V is the numerical approximation to U; 

Subtracting (3.11) from (3.8) we get in a fashion similar to the derivation of (2.9): 

(3.14) 
dE - = k[M(") + BTM(ar)p]E + kT2 
dt  

where E = U - V is the two dimensional array of the errors, e i j ,  arranged by rows as a 

vector. T2 is proportional to the truncation error. 

The time change of 11 E 1 1 2  is given by 

(3.15) 
I d  -- 11 E ]I2= k(E, (A4(") + PTM(')P)E) + k(E, T2) 
2 dt  

The symmetric part of M(") + PTM(Y)P is given by 

Clearly M(") + M("lT and M(Y) + M(YIT are block-diagonal matrices with typical blocks 

given by M f )  + and M y )  + M y )  . We have already shown in the one dimensional 

case that each one of those blocks is negative definite and bounded away from zero by r2/24. 

T 
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Therefore the operator (3.16) is also negative definite and bounded away from zero. The 

rest of the proof follows the one dimensional case and thus the norm of the error, 11 E 11, is 

bounded by a constant. 

If the domain 0 is not convex or simply connected then either rows or columns, or both, 

may be “interrupted” by 80. In that case the values of the solution on each “internal” 

interval (see figure [3] below) are taken as separate vectors. 

c 

X I j 

Figure 3: Two dimensional grid, non convex domain. 

Decomposing “interrupted” vectors in this fashion leaves the previous analysis unchanged. 

The length of U (or U(’)) is again l ,  where l is the number of grid nodes inside 0. The 

differentiation and permutation matrices remain x l .  Note that adding more “holes” inside 
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dfl does not change the general approach. 

4 Numerical Example 

In this section we describe numerical results for the following problem: 

where R is the region contained between a circle of radius ro = 1/2 and inner circle of radius 

ri 5 0.1. The inner circle is not concentric with the outer one. Specifically fl is described by 

The Cartesian grid in which R is embedded spans 0 5 x, y 5 1. We took Ax = Ay, and ran 

several cases with Ax = 1/50, 1/75, 1/100. The geometry thus looks as follows: 

Y b  
1 

0 5  

y=o 
X X=O 0 5  0.6 1 

Figure 4: 
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The source function f ( s ,y , t )  was chosen different from zero so that we could assign an 

exact analytic solution to (4.1). This enables one to compute the error E;j = U;j - Kj 
“exactly” (to machine accuracy). We chose k = 1 and 

u(z,y,t) = 1 + cos(l0t - lox2 - 10y2) (4.3) 

This leads to 

From the expression for u(z, y, t )  one obtains the boundary and initial conditions. 

The problem (4.1), (4.2), (4.4) was solved using both a “standard” fourth order algorithm 

(a 2-D version of (2.3)) and the new “SAT,” or “bounded error,” approach described in 

Section 3. The temporal advance was via a fourth order Runge-Kutta. 

The standard algorithm was run for Ax = 1/50 and a range of 0 5 S < .01 (.09 < r; 5 .1). 

We found that for S 2 .0017323, the runs were stable and the error bounded for “long” times 

(lo5 time steps, or equivalently t = 2). For 0 5 S < .0017233 the results began to diverge 

exponentially from the analytic solution. The “point of departure” depended on 6. A 

discussion of these results is deferred to the next section. Figures 5,6,7 show the &-norm of 

the error vs. time for different radii of the inner “hole.” 

The same configurations were also run using the “bounded error” algorithm described in 

Section 3 (see eq. (3.5)), and the results zre shown in figures 8,9,10,11. It is seen that for 
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6’s for which the standard methods fails, the new algorithm still has a bounded error, as 

predicted by the theory. 

To check on the order of accuracy, the “SAT” runs (with S = 0) were repeated for 

Ax = Ay = 1/75 and 1/100. Figure 12,13, and 14 show the logarithmic slope of the Lz, L1 

and L, errors to be less than -4; i.e., we indeed have a 4th order method. That the slopes 

are larger in magnitude than 4.5 is attributed to the fact that as Ax = Ay decreases the 

percentage of “internal” points increases (the boundary points have formally only 3rd oder 

accuracy). It is therefore possible that if the number of grid points was increased much 

further, the slope would tend to -4. Lack of computer resources prevented checking this 

point further. (For Ax = 0.01, running 20,000 time steps, t = . l ,  cpu time on a CRAY YMP 

is about 5 hours). It should also be noted that the “bounded-error” algorithm was run with 

a time step, At, twice as large as the one used in the standard scheme. At this larger At 

the standard scheme “explodes” immediately. 

err err 

0.0003 

0.00025 

0 .0002:  

0.00015: 

0 . 0 0 0 1 ~  
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Figure 5: S = 0.0017325, Standard Figure 6: S = 0.0017323, Standard 
scheme scheme 
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Figure 13: Order of accuracy L2 Figure 14: Order of accuracy L,  

A study of the effect of size of At shows that the instabilities exhibited above are due to 

the time-step being near the C.F.L.-limit. It is interesting that this C.F.L.-limit depends so 

strongly on the geometry. 

5 Conclusions 

(i) The theoretical results show that one has to be very careful when using an algorithm 

whose differentiation matrix, or rather its symmetric part, is not negative definite. For 

some problems, such “standard” schemes will give good answers (i.e., bounded errors) 

and for others instability will set in. Thus, for example, the “standard” scheme for 

the 1-D case has a matrix which, for all 0 < y ~ , y ~  < 1, though not negative definite 

has eigenvalues with negative real parts. This assures, in the 1-D case, the temporally 

asymptotic stability. In the 2-D case, even though each of the block sub-matrices of 

the 1 x .t z-and-y differentiation matrices has only negative (real-part) eigenvalues, it 

is not assured that the sua of the two .t x 1 matrices will have this property. This 

depends, among other things, on the shape of the domain and the mesh size (because 

31 



the mesh size determines, for a given geometry, the 7~ and 7 ~ ’ s  along the boundaries). 

Thus that we might have the “paradoxical” situation, that for a given domain shape, 

successive mesh refinement could lead to instability due to the occurrence of destabi- 

lizing 7’s. This cannot happen if one constructs, as was done here, a scheme whose 

differentiation matrices have symmetric parts that are negative definite. 

It is also interesting to note that if one uses explicit standard method then the allow- 

able C.F.L. may decrease extremely rapidly with change in the geometry that causes 

decrease in the 7)s. This point is brought out in figures 5 to 7. 

(ii) Note that the construction of the 2-D algorithm, and its analysis, which were based 

on the 1-D case, can be extended in a similar (albeit more complex) fashion to higher 

dimensions. 

(iii) Also note that if the diffusion coefficient k, in the equation 

ut = kA2u 

is a function of the spatial coordinates, k: = k(z, y, z), the previous analysis goes 

through but the energy estimate for the error is now for a different, but equivalent 

norm. 
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Appendix I 

We start with 

Dj = bDj-1- a2Dj-2 

with 

D1= b, D2 = b2 - a2 

We associate with (A.l) a generating function f ( x ) ,  

Multiplying (A.l) by for each j 2 3, and summing both sides we obtain: 

leading to 

1 DI + (D2 - b D 1 ) ~  = -  
a2 ( x  - ul)(x - u2) 

where u1, u2 are given by (2.48), (2.49). 

We may also present f by 

+ " I  a2 [ ( x  - U l )  ( x  - u2) 

1 A f = -  

(A-5) 
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Comparing (A.6) and (A.5) we get expression €or A and B as given in (2.50), (2.51). Ex- 

panding the denominator in (A.6) we get the following series for f 

from which it immediately follows (see (A.3)) that 
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